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Quantum mechanics and the theory of relativity are two of the
most important scientific developments of the 20th century.
Most of the structure of non-relativistic quantum mechanics
was put into place between 1925 and 1927, followed a few years
later by Dirac’s incorporation of special relativity.1,2 It is ironic
that Dirac himself  believed relativistic effects to be ‘of no
importance in the consideration of atomic and molecular struc-
ture and ordinary chemical reactions’.3 Indeed it was not until
the 1970s that the chemical consequences of relativity were fully
appreciated.

Since then there has been extensive investigation of the role
of relativity in chemistry. It is no coincidence that the emer-
gence of the field parallels the development of computational
quantum chemistry, for it is only through the latter technique
that we can directly compare non-relativistic atoms and mol-
ecules with their relativistic analogues. By now the chemical
consequences of relativity are well established, although the
point in the Periodic Table at which relativistic effects become
important in determining the properties of elements and their
compounds is not clear cut; it depends on the property and the
definition of important! In the words of Pekka Pyykkö: 4 ‘For
very precise calculations, relativistic energy contributions are
already needed for H2

+ or H2. . . . Depending on the accuracy
achieved in the calculation, they become relevant again around
Cu, or perhaps Ag. For the sixth row (around W to Bi), rela-
tivistic effects . . . . provide an explanation for much of the basic
freshman chemistry of these elements. For the existing actin-
oids relativistic effects are essential.’

This contribution begins with a very brief  introduction to
relativistic quantum mechanics, together with a discussion of
its chemical consequences. I have subsequently chosen a
number of topics with which to illustrate and highlight these
consequences, but it must be emphasised that these topics are
not intended to provide an exhaustive coverage. There are sev-
eral excellent discussions of relativistic effects in chemistry,4–8

including Pyykkö’s comprehensive 1988 review.4 Most of the
material in this article is taken from studies conducted since
that review was written, and is specifically chosen with a bias
toward inorganic and organometallic chemistry.

Theoretical Overview
The Dirac equation

A comprehensive discussion of relativistic quantum mechanics
is not appropriate for an article such as this,‡ although I believe
the reader will find some theoretical background helpful in
understanding the subsequent topics. We may begin by posing
the question, why is the Schrödinger equation incompatible

* E-Mail: n.kaltsoyannis@ucl.ac.uk
† Non-SI unit employed: eV ≈ 1.60 × 10219 J.
‡ For more complete treatments the reader is directed to refs. 4, 7 and
9–11. In addition, a list of 8265 (as of August 1996) references concern-
ing the relativistic treatment of atoms and molecules may be found on
the internet at http://www.csc.fi/lul/rtam.

with the theory of relativity? The time-dependent Schrödinger
equation for an electron with wavefunction Ψ moving in a gen-
eral external potential V(x, y, z) is given in (1). Notice that while
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there are second-order partial derivatives with respect to the
three spatial coordinates x, y and z, there is only a first-order
derivative with respect to time. This is at odds with the special
theory of relativity, which requires an even-handed treatment
of x, y, z and t.

In order to make quantum theory compatible with relativity,
Dirac 1–3 suggested an equation of the form (2) to replace the
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time-dependent Schrödinger equation for electrons, where αx,
αy, αz and β are constants and c is the speed of light. The Dirac
equation is therefore even-handed in its treatment of space
and time, but, in order that it also satisfy other relativistic
requirements, αx, αy, αz and β cannot be simple numbers.
Instead they are 4 × 4 matrices, and hence the Dirac equation is
meaningful only if  the wavefunction Ψ is a four-component
column vector (3) where each component, ψn, is a function of x,
y, z and t.

 ψ1
Ψ =  ψ2 (3)

 ψ3
 ψ4

In essence, then, there are four solutions to the Dirac
equation (four coupled differential equations in the four
components of Ψ). They separate into two pairs, one pair with
positive energy and the other with negative energy. The
positive-energy solutions correspond to a particle of mass me

and charge 2e (i.e. an electron) while the negative-energy solu-
tions correspond to a particle of the same mass but with
charge +e. The Dirac equation therefore predicted the existence
of the positron some years before its experimental discovery by
Anderson in 1933.12a A second triumph of the Dirac equation
arises from its prediction that there are two positive-energy
(electron) solutions. These solutions correspond to the two pos-
sible spin states of an electron, and thus the incorporation of
relativity into quantum mechanics via the Dirac equation leads
in a natural way to electron spin, which has to be treated rather
clumsily as an ‘extra’ in non-relativistic quantum mechanics.

The electron solutions to the Dirac equation have ψ1 and ψ2

as their principal components; they may be regarded as the
Schrödinger equation solutions for up- and down-spin elec-
trons respectively. Components ψ3 and ψ4 are radially much
more contracted than ψ1 and ψ2 and are always very small in the
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outer regions of an atom. They may, however, become import-
ant near the nucleus. The electron density is given by the sum of
the squares of all four components of Ψ. In the non-relativistic
limit ψ3 and ψ4 vanish, thereby recovering the Schrödinger-
equation atomic wavefunctions.

The modification of radial atomic wavefunctions and associated
eigenvalues

Einstein’s special theory of relativity tells us that it is impossible
to accelerate a particle to a velocity in excess of that of light.
This stems from the relativistic mass increase in equation (4)

m = m0/√1 2 (v/c)2 (4)

where m is the mass of a particle, of rest mass m0, moving with
velocity v. Clearly, when v = c, m becomes infinite.

In atomic units, the average radial velocity, 〈vrad〉, of  the elec-
trons in the 1s shell of an atom is approximately Z, where Z is
the atomic number. Thus for gold, for which Z = 79, we obtain
expression (5) where the speed of light is also expressed in

〈vrad〉
c

≈
79

137
≈ 0.58 (5)

atomic units. The average relativistic mass increase of the 1s
electron in gold is therefore given by equation (6).

m = m0/√1 2 (0.58)2 = 1.23m0 (6)

This has a marked effect on the radial distribution of the
electron, as the expression for the Bohr radius has a 1/m
dependence. Hence the relativistic 1s atomic orbital (AO) of
gold has an average radial contraction of ca. 20% in com-
parison with its non-relativistic analogue, an effect that is
accompanied by an energetic stabilisation of the electron.

The dependence of relativistic mass corrections on atomic
number means that, for light elements, the effects of relativity
are generally small. This is clearly not the case for heavy ele-
ments, however, and the consequences of relativity for the val-
ence electronic structure of such atoms are often profound (in
percentage terms, the modification of the valence-electron
radial distributions and energies in heavy elements upon the
inclusion of relativity often exceeds that of the core orbitals).
Although there are many competing factors that determine the
precise valence electronic structure of a heavy element [for
a more complete treatment the reader is directed to ref. 12(b)],
several general trends may be identified. In order that the s
functions in higher primary quantum shells remain orthogonal
to the core orbitals they are also stabilised by the effects of
relativity. This is known as the direct relativistic orbital contrac-
tion. Similar, though smaller, effects are experienced by p elec-
trons. In contrast, relativistic valence d and f  electrons are
expanded and destabilised with respect to their non-relativistic
analogues. This arises from the increased shielding of the
nucleus by the outer core s and p electrons of similar radial
distribution to the d and f  functions, and is known as the
indirect relativistic orbital expansion. In very heavy elements
such as the actinides the relativistic expansion and destabilis-
ation of the valence f  orbitals is sufficient to alter their chem-
istry markedly in comparison with (hypothetical) non-
relativistic analogues.

Relativistically expanded d and f  orbitals may themselves
have important consequences for (other) valence electrons. If  a
filled d or f  shell lies just inside a valence orbital that orbital
may experience an enhanced effective nuclear charge (and hence
a contraction/stabilisation) on account of the reduced nuclear
screening ability of the d and f  electrons. We shall see an
example of this effect later in this article in a further discussion
of the electronic structure of gold.

Spin–orbit coupling

One of the principal consequences of the Dirac equation for
chemistry stems from its prediction of electron spin. When an
electron is part of an atom the magnetic moment associated
with its intrinsic spin angular momentum couples with the
magnetic field generated by its orbital motion.13 The resulting
states are characterised by non-integral total angular
momentum values (j) as a result of the combination of integral
orbital angular momentum (l = 0, 1, 2, 3 . . .) with non-integral
spin angular momentum (s = ¹̄

²
). Except for s orbitals, for

which there is no orbital angular momentum, the spin–orbit
interaction splits a shell of given l into subshells with total
angular momentum j = l 2 ¹̄

²
 and l + 1

–
2
. The factors which govern

the magnitude of this spin–orbit splitting in many-electron
atoms are complicated but, in general, spin–orbit coupling
increases significantly with increasing nuclear charge and, for a
given primary quantum shell, decreases in the order p > d > f.
This is illustrated by the data in Table 1, which gives the ener-
getic separation of the spin–orbit-coupled terms of the ground
electronic configurations of Cl, I and La.

Symmetry and relativistic quantum mechanics: double point
groups

The linear combination of atomic orbitals (LCAO) approach to
molecular orbital (MO) theory occupies a central position in
inorganic chemistry. It is used to rationalise and predict, both
qualitatively and quantitatively, the electronic structure and
reactivity of molecules ranging from H2 to transition-metal
organometallics. A vital component of this methodology is
group theory, and the restrictions placed upon the interaction
of AOs within molecules by symmetry are extremely valuable in
studies of molecular electronic structure and bonding. The con-
struction of MO energy-level diagrams is carried out by deter-
mining the symmetry properties of AOs and combinations of
AOs. In doing this, attention is focused exclusively on the spatial
symmetry of the AOs; electron spin is taken into account only
through the use of the Pauli exclusion principle as the resultant
MOs are filled with the appropriate number of electrons.

The AOs used in this process are characterised by the orbital
angular momentum quantum number, l, which can take only
integral values. Hence the construction of MO energy-level
schemes in the manner described above involves the determin-
ation of the symmetry properties of electronic states character-
ised by integral angular momentum. We have seen, however,
that spin–orbit coupling results in AOs that are characterised
by non-integral angular momentum values. Can we still use
the same approach to describe/understand the electronic struc-
ture of compounds containing atoms for which spin–orbit
coupling is significant, i.e. are the symmetry properties of non-
integral angular momentum states the same as those of integral
states?

The answer is that, while we can use the same group theor-
etical principles as before, we must take account of certain fea-
tures of the symmetry of non-integral angular momentum
states that do not arise in l-based systems. The character of a
rotation through an angle α when applied to a state character-
ised by angular momentum j is given by expression (7). For

Table 1 Energy separations, ∆, of  the spin–orbit coupled terms of the
ground-state electronic configurations of Cl, I and La. Data from ref.
14

∆(2P1/2 2 2P3/2) ∆(2D5/2 2 2D3/2)

Element Z Configuration cm21 eV cm21 eV

Cl
I
La

17
53
57

[Ne]3s23p5

[Kr]4d105s25p5

[Xe]5d16s2

881
7605

0.109
0.943

1053 0.131
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χ(α) = sinSj +
1

2
Dα@sinS α

2
D (7)

integral j values we obtain equation (8), i.e. rotation by 3608

χ(α + 2π) = χ(α) (8)

leaves the system unaltered. However, for states with non-
integral j values equation (9) applies, i.e. rotation by 3608 is not

χ(α + 2π) = 2χ(α) (9)

an identity operation. We cannot, therefore, treat the symmetry
properties of states with non-integral angular momentum (e.g.
relativistic AOs and MOs formed from them) using normal
point groups. Instead we must use extensions to the normal
point groups, known as double groups.15,16

As their name suggests, double groups contain twice as many
symmetry operations as normal point groups (known as single
groups). In double groups, rotation through 3608 is not treated
as the identity operation, but as another symmetry operation. It
is given the symbol R. The extra operations of the double group
are obtained by taking the product of R with all of the oper-
ations of the single group, and the double-group identity oper-
ation is rotation through 7208.

Double groups contain extra irreducible representations in
addition to those of the single group. All integral angular
momentum states (e.g. non-relativistic, spatial MOs) have
symmetry properties which span one or more of the familiar
single-group irreducible representations. All states character-
ised by non-integral angular momentum values (e.g. relativistic
spin orbitals) have symmetry properties which span one or
more of the extra irreducible representations of the double
group.

Thus we may use LCAO-MO theory to construct relativistic
energy-level diagrams for molecules with one or more heavy
atoms, but each of the levels will carry a double-group sym-
metry label. It is important to note that, while a non-relativistic
energy-level scheme consists of spatial MOs into which we may
place both up- and down-spin electrons, electron spin is already
incorporated in double-point-group symmetry labels. It is there-
fore conceptually incorrect to represent individual electrons in
relativistic MO energy-level diagrams by arrows indicating dir-
ections of spin.

The group theoretical relationship between non-relativistic
spatial MOs and their relativistic spin–orbital counterparts may
be obtained by decomposing the reducible representation cre-
ated by the direct product of the single-group irreducible repre-
sentations with that of electron spin. It is frequently found that
spin–orbit coupling lifts the degeneracy of single-group irreduc-
ible representations, generating additional energy levels. This is
of critical importance in the interpretation of the electronic
spectra of compounds containing heavy elements; single-group
treatments fail to reproduce the spectra even qualitatively. We
shall see examples of the use of double point groups later in this
article.

Computational techniques

As I have already stated, by far the largest area of research to
focus on the chemical consequences of relativitity is compu-
tational quantum chemistry. This section therefore provides a
very brief  overview of the most popular and successful meth-
odologies. A more comprehensive account may be found in the
excellent review by Pepper and Bursten.8

In general we may separate the methods for incorporating
relativistic effects into molecular electronic structure calcul-
ations into two areas. The first approach is based upon the Pauli
approximation,7,11 which divides relativistic effects into different
categories and adds terms for each of these onto the non-

relativistic Schrödinger Hamiltonian. In most cases, compu-
tational methods employing the Pauli Hamiltonian account
only for the relativistic modification of AO energies. Spin–
orbit coupling is not explicitly included and the calculated
MOs are bases for the irreducible representations of the
molecular single-point groups. This method has the advantage
of straightforward comparison with non-relativistic calcul-
ations. The relativistic extended-Hückel (REX) method of Lohr
and Pyykkö,17 the quasi-relativistic scattered wave Xα (QRSW-
Xα) 18,19 and discrete variational 20 (DV) implementations of
density functional theory (DFT) and the Hay–Wadt–Kahn
effective core potentials 21 (ECPs) for use in ab initio Hartree–
Fock (HF) calculations are examples of this type of
approach.

The use of ECPs (both relativistic and non-relativistic) in ab
initio calculations (and in some DFT codes) is so widespread as
to merit additional comment. The difficulty in solving such cal-
culations rises very rapidly with the number of electrons. Hence
the core-electron wavefunctions are frequently replaced with an
ECP, thereby reducing the calculation to a more computation-
ally feasible valence-electron problem.* Such an approach has
proved highly successful, and is virtually mandatory when per-
forming ab initio calculations on transition-metal and f-element
compounds.

The second type of relativistic molecular electronic structure
calculations involves the solution of the full Dirac equation.
Spin–orbit coupling is therefore treated directly in this
approach, and the calculated orbitals are bases for the irre-
ducible representations of the molecular double-point group.
The Dirac–Fock–Slater (DFS) DV DFT approach of Ellis 22,23

and Pitzer’s relativistic ECPs 24 are examples of this
methodology.

We shall come across examples of the various types of calcul-
ational approach throughout this article. As computational
chemistry is riddled with acronyms, Table 2 provides definitions
of those employed herein.

Gold: a ‘Relativistic’ Element
The elements of the third transition and 6p series frequently
exhibit strong relativistic effects in their chemistries. There has
been much work, for example, on the role of relativity in the
chemistry of mercury.25–28 However, a maximum of relativistic
effects has been identified at gold,4 and I have therefore chosen
this element to illustrate some of the chemical consequences of
relativity. I shall begin by discussing how the atomic properties
of gold are affected by relativity, before moving on to describe
two aspects of the chemistry of gold in which relativity plays a
significant role.

Table 2 Definitions of the computational chemistry acronyms used

Acronym Definition

REX
QRSW-Xα
DV-Xα
DFT
ECP
HF
DF
HFS
DFS
MP

Relativistic extended Hückel
Quasi-relativistic scattered wave Xα
Discrete variational Xα
Density functional theory
Effective core potential
Hartree–Fock
Dirac–Fock
Hartree–Fock–Slater
Dirac–Fock–Slater
Møller–Plesset

* In addition to the elimination of the core electrons, the benefits of
ECPs include the elimination of the corresponding ‘sharp’ basis func-
tions and the ability to include relativistic phase shifts in the potential,
thereby leaving non-relativistic dynamics for the valence part (where
electron velocities are small).
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Atomic effects: relativity and the lanthanide contraction

It is well known that third-row transition-metal atoms are of
similar size to their second-row counterparts. For example, sil-
ver and gold both have a metallic radius of ca. 1.44 Å,29 and a
recent comparison of the crystal structures of bis(trimesityl-
phosphine)gold() and bis(trimesitylphosphine)silver() tetra-
fluoroborate has confirmed theoretical predictions that the
covalent radius of gold (1.25 Å) is actually less than that of
silver (1.33 Å).30 This is termed the lanthanide contraction, and
is usually attributed to the effect of the 4f electrons on the
effective nuclear charge, Z*, experienced by the valence
electrons. The 14 4f electrons do a poor job of screening the
corresponding 14 units of nuclear charge, with the result that
Z* for the valence electrons of the third-row transition metals
is higher than if  the core electrons were exclusively s, p and d.

The above reasoning relies entirely on shell-structure
arguments. However, a number of authors 4,31,32 have posed the
question, is the lanthanide contraction solely a result of
shell-structure effects or is relativity a factor? Comparative
non-relativistic Hartree–Fock and relativistic Dirac–Fock (DF)
calculations have been performed for all the elements,33 together
with calculations on pseudo-atoms in which the f  electrons have
been removed (and hence the nuclear charge reduced by 14).31,32

Some of the results are presented in Figs. 1 and 2, which show
the ns (n = 4–6) orbital energies and 〈rns〉 expectation values
respectively for Cu, Ag and Au.

These fascinating data reveal a complicated interplay of rela-
tivistic and shell-structure effects. The first point to note is how
the relativistic calculations indicate a more stable and con-
tracted ns AO than do their non-relativistic counterparts (com-
pare DF with HF), with the most pronounced effect at gold.
Secondly, notice that the non-relativistic HF calculations find a
more stable and contracted gold 6s AO than in pseudo-gold
(HF-ps). This is clear evidence for the 4f shell-structure effect.
Furthermore, the DF calculations reveal that the marked rela-

Fig. 1 Calculated [Hartree–Fock (HF) and Dirac–Fock (DF)] valence
s-orbital energies for Cu, Ag and Au; ‘ps’ indicates pseudo-gold without
the 4f electrons. Data from refs. 32 and 33. Note that the trend in the
negative of the experimental 34 first ionisation energies (7.726, 7.756 and
9.255 eV respectively) closely mirrors the relativistic DF s-orbital
energies

Fig. 2 Calculated 〈rns〉 expectation values for Cu (n = 4), Ag (n = 5)
and Au (n = 6); ‘ps’ as in Fig. 1. Data from refs. 32 and 33

tivistic stabilisation and contraction of the 6s AO occurs only
when the 4f shell is included; relativistic pseudo-gold (DF-ps)
has a 6s electron with similar energy and radial expansion to
that of non-relativistic gold. The conclusion from these data is
therefore that the relativistic stabilisation and contraction of
the 6s AO in gold is not a direct relativistic effect (i.e. not the
result of the stabilisation of the core s electrons permeating up
through the primary quantum shells), but is attributable (at
least in part, see below) to the 4f electrons.

Is this evidence that the lanthanide contraction is purely a
shell-structure effect? Certainly not! The relativistic 4f  electrons
experience a significant expansion in comparison with their
non-relativistic analogues (the indirect relativistic orbital
expansion referred to earlier) and are thus even poorer at
screening the additional nuclear charge. We may therefore con-
clude that the lanthanide contraction is a result of both shell-
structure and relativistic effects; the indirect relativistic orbital
expansion of the 4f electrons reduces their screening ability and
therefore increases the effective nuclear charge experienced by
the valence electrons.

As the third transition series is crossed the 4f electrons
become increasingly core-like. Other workers have examined
the origin of the ‘gold maximum’ and have concluded that, as
far as the relativistic contraction of the 6s AO is concerned, the
5d electrons play at least as big a role as the 4f.12 The mechan-
ism by which the 5d AOs affect the 6s, however, is the same as
that discussed above for the 4f, i.e. the relativistic expansion of
the 5d electrons increases the effective nuclear charge experi-
enced by the 6s. It would therefore appear that the relativistic
contraction of the 6s AO of gold arises from a relativistically
enhanced reduction in the nuclear screening ability of both the
4f and the 5d electrons.

In order to place the relativistic contraction of the 6s AO of
gold in context, it is instructive to compare the non-relativistic
and relativistic expectation values for r6s for the elements Cs
(Z = 55) to Fm (Z = 100). This is shown in Fig. 3, which plots
〈r6s〉rel/〈r6s〉non-rel for elements 55–100. It may be seen that there
is a pronounced maximum of the contraction at gold; not
until fermium (element 100) is reached is an equally strong
contraction observed.

Before leaving these purely atomic effects, it is worth compar-
ing the non-relativistic and relativistic orbital energies of the
(n 2 1)d and ns electrons of Ag and Au (Fig. 4). The relativistic
stabilisation of the 6s AO of gold is once again evident,
together with the concomitant destabilisation of the 5d AOs.
Both of these effects are much less pronounced in silver, with
the result that the energetic separation of the valence d and s
shells of Au is significantly smaller than that in Ag. The most
striking consequence of this is the colour of gold. Fine gold has
an absorption beginning at 2.4 eV, attributed to a transition
from the filled 5d band to the Fermi level (essentially the 6s
band).36 It therefore reflects red and yellow light and strongly

Fig. 3 The relativistic contraction of the 6s shell of elements Cs to
Fm, calculated as 〈r6s〉rel/〈r6s〉non-rel. Data from ref. 33. After Pyykkö4
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absorbs blue and violet. The analogous absorption for silver,
however, lies in the ultraviolet, at around 3.7 eV. The difference
arises from the larger relativistic modification of the valence d
and s orbital energies for gold. Non-relativistic gold would be
white, like silver, on account of the bigger band gap.

Relativistic bond-length contractions

A marked reduction in the lengths of covalent bonds involving
gold atoms is often found on moving from non-relativistic to
relativistic calculations. In a density functional study of MCH2

+

(M = Ni, Pd, Pt, Ir or Au), Heinemann et al.37 calculated a non-
relativistic Au]C distance of 2.153 vs. 1.867 Å relativistic-
ally. The DFS calculations on Au2 find a 0.206 Å shortening of
the Au]Au bond vs. equivalent non-relativistic Hartree–Fock–
Slater (HFS) calculations.38 Furthermore, relativistic calcul-
ations consistently predict shorter gold covalent bond lengths
than equivalent calculations on silver compounds. Table 3 pre-
sents M]C bond lengths in MCH3, MC6H5 and M(CH3)2

2

for M = Cu, Ag and Au.39 The calculated Au]C distances in
AuCH3 and AuC6H5 are approximately 0.1 Å shorter than in
the silver analogues.

The reader may be forgiven for concluding that the relativ-
istic contraction in bond lengths is a direct consequence of the
AO contraction, on the basis that in order to achieve the most
efficient overlap of the contracted AOs the nuclei have to be
closer together. Indeed this was assumed to be the case 6 until the
work of Ziegler, Snijders, Baerends and Pyykkö 41–43 produced
the (initially surprising) result that the two effects are largely
unrelated. It was found that the bond-length contractions could
be reproduced by applying first-order perturbation theory to
the non-relativistic, uncontracted AOs. This approach (which is
an example of the Pauli approximation referred to in the sec-
tion Computational techniques) indicates that the bond-length
contractions arise from the effect of the relativistic modifi-
cations to the Hamiltonian energy operator when applied to
the non-relativistic AOs. These relativistic modifications reduce
the kinetic energy increase experienced by the electrons as the
atoms are pushed together, causing the minima in the binding-
energy curves to shift to smaller internuclear distances. The
relativistic AO contraction and that of bond lengths are there-
fore two parallel but largely independent effects.

The data in Table 3 indicate that relativistic bond-length con-
tractions are also significant for Cu, with a 0.057 Å Cu]C
shortening in CuCH3 on moving from a non-relativistic to

Fig. 4 Calculated non-relativistic and relativistic (n 2 1)d and ns
orbital energies for Ag (n = 5) and Au (n = 6). Relativistic d-orbital
energies are the weighted average of the d₂

₃ and d₂
₅ spin–orbit com-

ponents. Data from ref. 33. After Pyykkö35 a relativistic ECP. In order to test this conclusion further, the
authors calculated the Cu]C bond length in Cu(CH3)2

2 and
compared the results with experiment. It may be seen that the
calculation with the relativistic ECP is closer to the experi-
mental bond length than that with the non-relativistic ECP.

The ‘aurophilicity’ of AuI

Closed-shell metal cations such as AuI ([Xe]4f145d10) would nor-
mally be expected to repel one another. By the end of the 1980s,
however, there was sufficient crystallographic evidence of
attractions between gold() cations to lead Schmidbaur to coin
the phrase ‘aurophilic attraction’ or ‘aurophilicity’.44,45 Given
that so much of gold chemistry is influenced by relativity, it was
natural to inquire as to whether the aurophilic attraction is also
a relativistic effect. Görling et al.46 used Ellis’ DV-Xα density
functional method to study the electronic structure of a fascin-
ating series of gold cluster compounds, the main-group-
element-centred octahedral complexes [{(H3P)Au}6Xm]m+

(X1 = B, X2 = C, X3 = N). These compounds, which may be
formally regarded as containing gold() cations, feature quite
short, ‘aurophilic’ Au]Au distances. Much of the study focused
on the role of the gold 5d AOs in Au]Au bonding. d-Orbital
participation can, of course, be achieved only if  the formal d10

configuration is broken, e.g. through 6s/5d hybridisation. The
conclusion was that there is a prominent contribution of the
gold 5d AOs to the Au]Au bonding within the cluster, via 6s/
5dz2 hybridisation in the MOs of a1g symmetry. Furthermore, it
was argued that the effect has its origin in the relativistic modi-
fication of the gold valence AO energies, which brings the 5d
and 6s orbitals into close energetic proximity (Fig. 4).

Pyykkö and Li 47,48 also investigated the origin of the
aurophilic attraction, but came to very different conclusions.
They argued that the effect is primarily due to electron correl-
ation and not s–d hybridisation. Table 4 gives calculated 47 and
experimental Au]Se]Au angles in structure 1. Pyykkö and Li
maintain that, if  hybridisation effects are important, the
Au? ? ?Au attraction (as evidenced by the small Au]Se]Au
angle) should be present in the uncorrelated calculations. Their
data show that the experimental Au]Se]Au angle is reproduced
closely only when a relativistic ECP is employed for Au and
electron correlation is included [via Møller–Plesset (MP)
theory 40]. The uncorrelated Au]Se]Au angle, even with a rela-
tivistic ECP, is still 18.78 larger than the experimental value.

Further support for this conclusion came from their study 48

of the Au]Au potential curves in structure 2. For a wide range
of X all of the Au]Au potential curves are calculated to be
repulsive at the HF (uncorrelated) level. This stands in marked

Table 3 The M]C bond lengths (Å) in MCH3, MC6H5 and M(CH3)2
2

(M = Cu, Ag or Au). Data from ref. 38. All calculations are ab initio
(with non-relativistic or relativistic ECPs) and include electron correl-
ation at the MP240 level

M MCH3 MC6H5 M(CH3)
22

Cu

Ag
Au

Relativistic calculation
Non-relativistic calculation
Experimental
Relativistic calculation
Relativistic calculation

1.866
1.923

2.111
2.017

1.850

2.091
1.981

1.922
1.963
1.935

Table 4 The Au]Se]Au angle (8) in (H3PAu)2Se. Data from ref. 46

Non-relativistic
ECP

Relativistic
ECP

Hartree–Fock
(uncorrelated)

Hartree–Fock + MP2
(correlated)

Experimental

111.9

87.3

97.8

75.4

79.1
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contrast to the equivalent curves at the HF + MP2 level, all of
which are now attractive with well depths ranging from 12.3 kJ
mol21 for X = F to 25.1 kJ mol21 for X = SCH3. Once again,
therefore, the aurophilic attraction is reproduced theoretically
only upon the inclusion of electron correlation.

Häberlein et al.49 revisited the octahedral gold clusters
[(LAu)6X]m+ (X = B, m = 1; X = C, m = 2; X = N, m = 3;
L = PH3 or PMe3) in a more extensive study probing the effects
of the charge on the cluster cations, the structural consequences
of an atom in the centre of the cluster and the extent of relativ-
istic and electron-correlation effects. Among their conclusions
were: (a) the bonding in element-centred gold clusters is mainly
radial, between the gold phosphine units and the central atom;
(b) although it is not easy to isolate the effects of electron
correlation in a density functional study, meaningful electronic
structure investigations of gold cluster compounds have to
include some treatment of correlation effects and (c) relativity
and the interaction of gold with the phosphine ligands combine
to produce an effective gold electronic configuration closer to
5d9 than 5d10.

Thus the origin of the aurophilic attraction has not yet been
uniquely and unambiguously established. It is not clear if  this is
due to intrinsic differences in the Au]Au interactions in the
different molecules under investigation, or to the philosophic-
ally different theoretical methods used to study them. The
debate continues.

Electronic Structure of [M(ç5-C5H5)3]
(M = f element)
The organometallic chemistry of the f  elements, while later in
starting than that of the transition metals, is now well estab-
lished. The lanthanide series has an extensive organometallic
chemistry and, while that of the actinides is largely focused (for
reasons of radioactivity and availability) on Th and U, many
organoactinide compounds are also known. As with other
f-element compounds, the extent to which relativity affects the
metal–ligand interactions in organo-lanthanide and -actinide
molecules is of great interest, particularly in relation to the role
of the metals’ valence d and f  orbitals. I have chosen one of the
most widely studied f-element organometallic systems, [M(η5-
C5H5)3], to illustrate the methods employed in probing the
metal–ligand interactions and the conclusions drawn from
those investigations. The high symmetry of these elegant mol-
ecules allows the respective roles of the metal valence AOs to be
isolated.

The compound [M(η5-C5H5)3], in which the metal atom and
the η5-C5H5 centroids are coplanar, is a common structural
motif  among the f  elements. Its electronic structure has been
investigated by a number of workers,50–59 not only because of

the intrinsic interest in the metal–ligand interactions, but also
because there are almost no transition-metal compounds con-
taining three η5-C5H5 ligands (either as the entire ligand
environment or in conjunction with other groups). This may be
explained with reference to Fig. 5, an energy-level diagram of
the calculated 59 (DV-Xα) valence MOs of [M(η5-C5H5)3]
(M = Ce or Th). The principal metal–(η5-C5H5) bonding in
[M(η5-C5H5)3] occurs between the valence AOs of the central
metal and the highest occupied molecular orbitals (HOMOs) of
the η5-C5H5 ligands. These are C 2pπ MOs and, as they have two
nodal planes in addition to the plane of the carbocyclic skel-
eton, are referred to as the π2 orbitals. When three η5-C5H5 units
combine to form a C3v ligand field their π2 orbitals produce
a1 + a2 + e + e levels, with the a2 orbital being significantly
destabilised above the other combinations owing to ligand–
ligand interactions. These orbitals are labelled (η5-C5H5) π2 on
the left-hand side of Fig. 5(a) and 5(b). The scarcity of the
[M(η5-C5H5)3] unit for transition metals and the abundance of
the same unit among the f  elements may be traced to the a2 level
generated by the three η5-C5H5 ligands. There is no d orbital
that transforms as a2 symmetry in C3v ligand environments; in
contrast the fy(3x22y2) orbital can stabilise the ligand a2 combin-
ation and provide significant metal–ligand bonding in the
process.

Bursten and Strittmatter 52–56 have used the QRSW-Xα
implementation of DFT in an extensive computational study of

Fig. 5 Calculated non-relativistic and relativistic molecular orbital
energy levels of [M(η5-C5H5)3] [M = Ce (a) or Th (b)]. Relativistic
molecular orbital symmetry labels belong to the C3v* double-point
group. Dashed lines across the energy scales indicate broadly how the
non-relativistic molecular orbitals relate to the relativistic. The highest
occupied orbitals of the relativistic calculations are indicated by a
dashed horizontal line. Data from ref. 59
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the bonding in [M(η5-C5H5)3] (M = Ln or An) and derivative
molecules. They concluded that, in the case of [An(η5-C5H5)3],
the actinide 6d AOs are more important than the 5f in bonding
the ligands to the metal on account of the greater radial exten-
sion of the 6d orbitals vs. the 5f. In [Ln(η5-C5H5)3] the 5d AOs
of the Ln atoms have a similar function to their actinide 6d
counterparts, but the lanthanide 4f AOs do not interact with
the ligands to the same extent as do the actinide 5f. This is
attributed to the differences in radial extension and energies of
the two sets of orbitals.56

These conclusions are supported by a combined theoretical
and experimental study of bis(polymethylcyclopentadienyl)-
lanthanide hydrocarbyl compounds (Ln = La, Ce, Nd, Sm or
Lu).60 Non-relativistic DV-Xα and ab initio (with relativistic
ECPs) calculations, in conjunction with gas-phase ultraviolet
photoelectron spectroscopy (PES), were used to establish that,
while the lanthanide 5d AOs participate significantly in metal–
ligand bonding, the 4f contribution is negligible. It was also
found that a gradual stabilisation of the 4f AOs occurs as the
lanthanide series is crossed, to the extent that they are almost
core-like in [Me2Si(η5-C5Me4)2Lu{CH(SiMe3)2}].

Bursten and Strittmatter 57,61 found a similar stabilisation of
the actinide 5f-based MO manifold in [An(η5-C5H5)3] as the
actinide series is crossed. At the start of the actinide period the
5f manifold is less stable than the 6dσ MO (largely actinide 6dz2),
but is rapidly stabilised with increasing atomic number. Thus
while [U(η5-C5H5)3], [Np(η5-C5H5)3] and [Pu(η5-C5H5)3] are cal-
culated to have the formal electronic configurations 6d05f3,
6d05f4 and 6d05f5 respectively, [Pa(η5-C5H5)3] is predicted to be
6d15f1 and [Th(η5-C5H5)3] 6d15f0. This is in agreement with
experimental conclusions on the closely related [Th{η5-C5H3-
(SiMe3)2-1,3}3].

62,63 The crossing of the 6d and 5f levels at Pa
has also been observed in REX 64 and HFS 65 studies of the
actinocenes, [An(η8-C8H8)2].

As part of a project to reproduce computationally the elec-
tronic absorption spectra of a range of ‘f1’ compounds (f-
element molecules in which the metal is in an oxidation state
one less than its group valence), Kaltsoyannis and Bursten 59

used a fully relativistic implementation of the DV-Xα method-
ology to study [Ce(η5-C5H5)3] and [Th(η5-C5H5)3]. Some of the
results of this investigation are presented pictorially in Fig. 5.
Focusing on [Ce(η5-C5H5)3] [Fig. 5(a)], it may be seen that the
non-relativistic calculation predicts a formal 4f1 configuration
(the HOMO is the 4f-based 4e level). Above the 4f manifold
(4e–2a2) comes the 5a1 cerium 5dz2-based orbital. The 4f mani-
fold is destabilised on the incorporation of relativity [the relativ-
istic calculational results are shown on the right-hand side of
Fig. 5(a)] although the effect is not sufficient to alter the formal
ground-state electronic configuration.

This stands in marked contrast to the equivalent calculations
on [Th(η5-C5H5)3]. At the non-relativistic level, [Th(η5-C5H5)3]
is similar to [Ce(η5-C5H5)3], with a formal 5f1 ground-state con-
figuration. The inclusion of relativity, however, produces a 7e1/2

HOMO which contains predominant thorium 6dz2 (in non-
relativistic notation) character, i.e. a formal 6d1 configuration.
Thus both the quasi-relativistic SW-Xα and the fully relativistic
DV-Xα computational methods agree that the ground-state
configuration of [Th(η5-C5H5)3] is formally 6d1. Furthermore,
the DV-Xα results indicate that this is a direct result of the
effects of relativity.

The consequences of this unusual electronic configuration
for the electronic absorption spectrum of [Th(η5-C5H5)3] are
profound. Non-relativistically [Th(η5-C5H5)3] is predicted to
give rise to weak f → f/d optical transitions, whereas the rela-
tivistic calculation suggests a spectrum consisting of d → f
promotions. The intense absorptions seen in the experi-
mental electronic absorption spectrum of [Th{η5-C5H3-
(SiMe3)2-1,3}3]

62,63 are attributed to promotion of the single 6d
electron into the 5f manifold, in agreement with the relativistic
calculation.

The Dewar–Chatt–Duncanson Model of Synergic
Bonding

The bonding of ligands such as CO and phosphines to transi-
tion metals is usually rationalised using the Dewar–Chatt–
Duncanson (DCD) approach.66,67 This suggests that there are
two synergic processes occurring; donation of electron density
from a ligand orbital of σ symmetry with respect to the metal–
ligand axis into an empty metal d orbital, with simultaneous
donation of electron density from a filled metal dπ orbital into
an empty π* orbital on the ligand. This model has recently been
the subject of a number of computational investigations, with
the effects of relativity coming under particular scrutiny. Li et
al.68 used non-relativistic and relativistic density functional
theory to study [M(CO)4] (M = Ni, Pd or Pt), [M(CO)5]
(M = Fe, Ru or Os) and [M(CO)6] (M = Cu, Mo or W). Among
their findings was a significant increase in the M]CO bond
strength in the third-row compounds on comparison of the
relativistic calculations with the non-relativistic analogues. This
increase, which is substantially greater than in the 3d and 4d
congeners, ranged from 20.9 kJ mol21 in [W(CO)6] to 47.2 kJ
mol21 in [Pt(CO)4], a trend which reflects one of their general
conclusions; relativistic effects increase in the order
[W(CO)6] < [Os(CO)5] < [Pt(CO)4].

The origin of the relativistic increase in M]CO bond
strengths may be traced to the relativistic modification of AO
energies. In particular, the destabilisation of the metals’ 5d AOs
brings them into closer energetic proximity with the vacant CO
π* MOs, thereby increasing the dπ→CO π* back donation. This
increase was found to be the predominant stabilising contribu-
tion to the M]CO bond energies in all cases.

The σ-donation component of the synergic bond is also
affected by relativity. In the case of [W(CO)6] and [Os(CO)5], σ
donation CO → M is into metal-based orbitals of 5dσ and
6pσ character respectively. Both of these sets of MOs are
destabilised slightly by relativity, and σ donation decreases. In
contrast, σ donation CO → Pt in [Pt(CO)4] is into Pt-based
MOs with appreciable metal 6s character. These are stabilised
on the incorporation of relativistic effects and hence σ donation
increases. Thus for [Pt(CO)4] relativity increases both the σ and
π components of the synergic bond.

The relative strengths of σ donation and π back donation
in transition-metal carbonyl complexes has been studied by
Dapprich and Frenking.69 They employed the charge-
decomposition method to analyse the results of HF + MP2
(with relativistic ECPs) calculations of [W(CO)6] and [M(CO)]+

(M = Ag or Au). They found that in [W(CO)6], σ donation and
π back donation are of similar magnitude, in contrast to
[M(CO)]+ for which π back donation is virtually negligible and
σ donation from CO to metal dominates.

Li et al.70 have also carried out a density functional study of
the bonding of the X2 ligand to the metal centre in [M(PH3)2X2]
(M = Ni, Pd or Pt; X2 = O2, C2H4 or C2H2) and [M(CO)4X2]
(M = Fe, Ru or Os; X2 = C2H4). In all cases the relativistic M]X2

bond strengths display a V-like trend from top to bottom within
a triad, with the minimum at the second row. The cause of
the increase in M]X2 bond strength between second and third
row was again attributed to relativistically enhanced π back
donation. A concomitant distortion of the X2 ligand was
found in the calculated molecular geometries; an increase in
O]O or C]C bond lengths and a bending of the H atoms
(in C2H4 and C2H2) away from the metal. Both of these effects
are consistent with a reduction in π bonding within the X2

ligand.
The nature of the π-acceptor orbitals in phosphine ligands

has been the subject of investigation.71–73 Xiao et al.70 argued
that, rather than the traditional phosphorus 3d AOs, P]R (or
P]X) σ* MOs of π symmetry with respect to the metal–ligand
axis are the principal acceptors of metal dπ electron density.
Recently Fantucci et al.74 found that, in a combined relativistic
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density functional and ab initio study of [Pt(PX3)2] (X = H or
F), the accumulation of electronic charge in the MOs derived
from the phosphorus 3d AOs was between 50 and 60% of the
total π-electron density transferred from Pt to PX3. This sug-
gests that these 3d AOs play at least as important a role as the
PX3 σ* MOs in the π component of the synergic bond. How-
ever, Fantucci et al. sounded a note of caution as they also
found that charge is accumulated in the phosphorus σ-donor
orbitals on complexation, completely counter to the DCD
mechanism. They concluded that the phosphorus AO popul-
ations cannot be related solely to Pt ←→ PX3 charge exchange,
but are also affected by charge rearrangements internal to the
ligand.

Spin–Orbit Coupling and Electronic Spectroscopy
Thus far the topics that I have chosen have been primarily
concerned with the chemical consequences of the relativistic
modification of AO energies. In this section I shall explore the
second major effect of relativity, spin–orbit coupling. Spin–
orbit effects are arguably most important in the area of elec-
tronic spectroscopy, and hence this section concentrates upon
two examples drawn from this field.

Optical spectra of AnX6
q2

If  a transition-metal atom or ion with a formal d1 configuration
is placed in an octahedral ligand field a band is likely to be
observed in the optical spectrum corresponding to the promo-
tion of the single metal d electron from the t2g orbitals to the
vacant eg levels. In [Ti(H2O)6]

3+, for example, this transition
occurs at ca. 20 000 cm21.75 Any asymmetry in the shape of the
band is likely to be due to, for example, vibronic coupling and/
or the Jahn–Teller effect. Spin–orbit coupling can be safely
ignored (at least for the 3d and 4d metals).

However, the role of spin–orbit coupling in the electronic
structure of actinide complexes is much greater. This may be
illustrated with reference to octahedral actinide complexes with
the metal in a formal oxidation state one less than its group

Fig. 6 Calculated non-relativistic and relativistic uranium 5f-based
molecular orbital energy levels of UF6

2. The transitions of the single
5f-based electron (represented by a circle) from the a2u (non-relativistic)
and e5/2

2 (relativistic) highest occupied orbitals to the other 5f-based
levels are represented by vertical arrows. The wavenumbers of the tran-
sitions are shown in green as calculated (experimental). Relativistic
molecular orbital symmetry labels belong to the Oh* double-point
group. Data from ref. 76

valence, i.e. 5f1 systems. The effect of the octahedral ligand field
on the metal’s 5f  orbitals is to split them into a lowest-lying a2u

level, an intermediate t2u set and a least-stable t1u orbital. We
might therefore expect two electronic bands in the optical
spectrum, corresponding to the promotions a2u

1t2u
0t1u

0 →
a2u

0t2u
1t1u

0 and a2u
1t2u

0t1u
0 → a2u

0t2u
0t1u

1. This situation is
illustrated in Fig. 6, which shows the calculated 76 ground-state
energies of the 5f-based MOs of UF6

2, together with the ener-
gies of the transitions (in wavenumbers; plain green text) of the
single 5f electron within the 5f manifold. Two separate studies
have been performed, one using non-relativistic DFT and the
other employing fully relativistic DFT. Notice how there are
twice as many relativistic electronic transitions as non-
relativistic ones. This arises from the effects of spin–orbit
coupling, which lifts the degeneracy of the t symmetry non-
relativistic single-group MOs (the symmetry labels of the rela-
tivistic energy levels belong to the octahedral double-point
group, Oh*).

The experimentally determined 77 electronic transition ener-
gies are given in italics on the relativistic MO diagram. Com-
parison of the calculated and experimental data reveals that the
relativistic calculations do an excellent job of reproducing
experiment. (The lowest energy e5/2

2 → g3/2
2 transition was

not detected experimentally; data were not acquired below 5000
cm21.) It is also clear that the non-relativistic calculations show
very poor agreement with experiment, both qualitatively (they
predict too few transitions) and quantitatively. Analogous
calculations on other octahedral 5f1 complexes 76 (PaX6

22,
X = halide; UX6

2, X = Cl or Br; NpF6) give similar agreement
with experiment.

It is worth emphasising that the factors that complicate
transition-metal optical spectra (electron–electron repulsions,
Jahn–Teller splitting, vibronic coupling, etc.) are no less com-

Fig. 7 Qualitative molecular orbital energy-level diagram for OsO4.
Symmetry labels in parentheses are those of the orbitals of an O4

tetrahedron
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Table 5 Ionisation energies and band assignments of the valence photoelectron spectrum of OsO4. Ionisation energy data from ref. 84

Associated
Ionisation Non-relativistic non-relativistic Relativistic ion Associated

Band energy/eV ion state MO a state relativistic MO b

A
B
C
D
E

12.35
13.14
13.54
14.66
16.4, 16.8

2T1
2T2
2T2
2A1
2T2 + 2E

1t1

3t2

3t2

2a1

2t2 + 1e

G3/2 + E1/2

G3/2

E5/2

E1/2

E5/2 + G3/2 + G3/2

4g3/2 + 2e1/2

3g3/2

2e5/2

1e1/2

1e5/2 + 2g3/2 + 1g3/2

a Orbital numbering scheme from Figs. 7 and 9. b Orbital numbering scheme from Fig. 9.

mon in actinide systems. Thus relativity exacerbates an already
complex situation; separating the effects of relativity from those
of interelectronic repulsion, Jahn–Teller distortion and metal–
ligand bond vibrations is part of the challenge of heavy-
element electronic spectroscopy.

Photoelectron spectrum of OsO4

Tetrahedral co-ordination is one of the geometries central to

Fig. 8 Valence photoelectron spectrum of OsO4, acquired with syn-
chrotron radiation at 39 eV. Data from refs. 84 and 90

Fig. 9 Calculated non-relativistic and relativistic molecular orbital
energy levels of OsO4. Letters on the right-hand side refer to the bands
in the photoelectron spectrum (Fig. 8) that the orbitals give rise to.
Relativistic molecular orbital symmetry labels belong to the Td* double-
point group. Data from ref. 89

inorganic chemistry, and a thorough appreciation of the elec-
tronic structure of tetrahedral molecules is of key importance
in understanding a wide range of chemical systems. Osmium
tetraoxide is a classic example of a tetrahedral molecule, and
there have been extensive photoelectron (PE) spectroscopic
investigations of its electronic structure,78–84 as well as numer-
ous calculational studies.84–89 The assignment of its PE spec-
trum has been the subject of debate for over 20 years, but I
now believe that this has finally been resolved, with relativistic
effects playing a central role.

A qualitative non-relativistic valence MO energy-level
scheme for OsO4 is given in Fig. 7. The 1a1 and 1t2 are essen-
tially oxygen 2s orbitals. Of the remaining occupied levels, the
2t2 and 2a1 are traditionally associated with Os]O σ bonding
and the 1e and 3t2 with Os–O π bonding, although there is
strictly no σ/π separability in t2 MOs in Td symmetry. The 1t1

HOMO is metal–ligand non-bonding.
Five primary ion states are therefore expected to occur in the

PE spectrum of OsO4 in the valence ionisation energy (IE)
region, a 2A1, a 2E, a 2T1 and two 2T2. These result from ionis-
ation of the 1e–1t1 MOs. The PE spectrum of OsO4 is shown in
Fig. 8, and there are indeed five bands, labelled A–E. However,
there is not a simple one to one correspondence between the PE
bands and the primary ion states. The most likely assignment is
given in Table 5, from which it may be seen that band E con-
tains the 2E and 2T2 (from the 2t2 MO) primary ion states. Thus
bands A–D are the result of only three primary ion states, with B
and C being the spin–orbit components of the 2T2 (3t2) state.

Space does not permit me to go into the reasons for this
assignment; suffice it to say that there is extensive experimental
and theoretical evidence to support it. The origin of the spin–
orbit splitting of bands B and C is, however, of particular
interest. The puzzle is this: as the 3t2 MO is largely oxygen 2p-
based, why is the spin–orbit splitting so large (0.40 eV)? Clearly
spin–orbit splitting of this magnitude must originate from the
metal, but it cannot be due to a 5d contribution to the 3t2 MO
as the relative ordering of the G3/2 and E5/2 ion states is contrary
to that expected for splitting of a t2 MO with d character.84 The
only possibility is an osmium p AO contribution, presumably
the 6p valence AO. It was felt, however, that the 6p character of
the 3t2 MO was too small to produce the required spin–orbit
splitting.84

Relativistic DFT was recently employed 89 in an attempt to
resolve this dilemma, and the results are presented pictorially in
Fig. 9. It was found that bands B and C indeed stem from the
same 2T2 primary ion state, with the osmium p AO content in
the associated 3t2 MO the cause of the spin–orbit splitting.
Interestingly this p content is not purely 6p, but also includes a
very small 5p contribution (<1%). Such a small AO contribu-
tion to a MO would normally be disregarded, but in this case
the magnitude of the spin–orbit coupling in the osmium semi-
core 5p AO is so great (the osmium 5p AO spin–orbit splitting
is 12.8 eV 33) that even a tiny contribution to the non-relativistic
3t2 orbital affects the separation of the relativistic 2e5/2 and 3g3/2

levels. The conclusion was that the 6p AO content of the 3t2

MO is responsible for approximately 2/3 of the spin–orbit split-
ting, with the 5p contribution accounting for the remainder.
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Conclusion
I hope that the topics addressed in this contribution have given
the reader some insight into the role of relativity in chemistry,
and have shown that Dirac’s initial conclusion as to the chem-
ical significance of relativity was some way off  the mark. I have
no doubt that the effects of relativity in heavy-element chem-
istry will continue to be a fruitful area of research, particularly
for the computational quantum chemist. Recent evidence 91 that
the lifetimes of superheavy elements with Z > 109 may be much
higher than previously anticipated may well take investigators
further into the largely unexplored area of transactinide chem-
istry. These elements are expected to exhibit relativistic effects
to an even greater extent than do the third-row transition
metals and actinides. Indeed it was recently predicted 32 that the
transactinide elements should have an actinide contraction so
great that element 111 (which lies below gold) has a smaller
atomic radius than any of its lighter Group 11 congeners!
Furthermore this actinide contraction, unlike the lanthanide
equivalent, is found to be almost exclusively a relativistic effect.
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